

���® SPE Runtime Management Library

 Version 2.0

 CBEA JSRE Series
 Cell Broadband Engine Architecture
 Joint Software Reference
 Environment Series

 November 11, 2006

���® Table of Contents
2

© Copyright International Business Machines Corporation, Sony Computer Entertainment
Incorporated, Toshiba Corporation 2003, 2004, 2005, 2006

All Rights Reserved

Printed in the United States of America December 2006

The following are trademarks of International Business Machines Corporation in the United
States, or other countries, or both.

IBM PowerPC

IBM Logo PowerPC Architecture

Other company, product, and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products
described in this document are NOT intended for use in applications such as implantation, life
support, or other hazardous uses where malfunction could result in death, bodily injury, or
catastrophic property damage. The information contained in this document does not affect or
change IBM product specifications or warranties. Nothing in this document shall operate as an
express or implied license or indemnity under the intellectual property rights of IBM or third
parties. All information contained in this document was obtained in specific environments, and is
presented as an illustration. The results obtained in other operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS”
BASIS. In no event will IBM be liable for damages arising directly or indirectly from any use of
the information contained in this document.

IBM Systems and Technology Group
2070 Route 52, Bldg. 330
Hopewell Junction, NY 12533-6351

The IBM home page can be found at ibm.com
The IBM semiconductor solutions home page can be found at ibm.com/chips

November 11, 2006

SPE Runtime Management Library, Version 2.0

 Table of Contents ���®
3

Table of Contents

Table of Contents.. 3

About This Document... 5

Audience ... 5

Version History... 5

Related Documentation... 5

Overview... 6

Examples... 9

SPE Context Creation ... 11

spe_context_create.. 12

spe_context_destroy.. 14

spe_gang_context_create .. 15

spe_gang_context_destroy.. 16

SPE Program Image Handling .. 17

spe_image_open.. 18

spe_image_close ... 19

spe_program_load... 20

SPE Run Control... 21

spe_context_run .. 22

spe_stop_info_read ... 27

SPE Event Handling ... 28

spe_event_handler_create ... 29

spe_event_handler_destroy... 30

spe_event_handler_register... 31

spe_event_handler_deregister... 33

spe_event_wait.. 34

SPE MFC Problem State Facilities ... 35

SPE MFC Proxy Command Issue... 35

spe_mfcio_put, spe_mfcio_putb, spe_mfcio_putf.. 36

spe_mfcio_get, spe_mfcio_getb, spe_mfcio_getf... 38

SPE MFC Proxy Tag-Group Completion Facility.. 40

 SPE Runtime Management Library, Version 2.0

���® Table of Contents
4

spe_mfcio_tag_status_read ... 40

spe_out_mbox_read .. 43

spe_out_mbox_status.. 44

spe_in_mbox_write... 45

spe_in_mbox_status.. 47

spe_out_intr_mbox_read... 48

spe_out_intr_mbox_status .. 50

SPE SPU Signal Notification Facility... 51

spe_signal_write ... 51

Direct SPE Access for Applications ... 52

spe_ls_area_get ... 53

spe_ls_size_get ... 54

spe_ps_area_get .. 55

PPE-assisted Library Calls.. 58

spe_callback_handler_register.. 60

spe_callback_handler_deregister .. 61

Appendix A: Data Structures .. 62

SPE Context .. 62

SPE Gang Context .. 62

SPE Program Handle .. 62

SPE Runtime Error Information ... 63

SPE Problem State Areas.. 63

SPE Event Structure.. 64

Appendix B: Symbolic Constants... 66

SPE Context Creation ... 66

SPE Run Control... 66

SPE Events.. 67

SPE Tag Group Completion Facility .. 68

SPE Mailbox Facility.. 68

SPE Problem State Areas.. 69

SPE Runtime Management Library, Version 2.0

 About This Document ���®
5

About This Document
This document describes the SPE Runtime Management Library. This library constitutes the
standardized low-level application programming interface for application access to the Cell
Broadband Engine’s Synergistic Processing Elements (SPEs).

This document and the usage of the library requires that the application programmer is familiar
with the Cell Broadband Engine (CBE) architecture as described in “Cell Broadband Engine
Architecture, Version 1.0”.

Audience
The document is intended for system and application programmers who wish to develop Cell
Broadband Engine (CBE) applications that fully exploit the SPEs.

Version History
This section describes significant changes made to the SPE Runtime Management Library
specification for each version of this document.

Version Number and Date Changes

Version 2.0
November 11, 2006

Initial public release of the document.

Related Documentation
The following table provides a list of reference and supporting materials for the SPE Runtime
Management Library specification:

Document Title Version

Cell Broadband Engine Architecture Version 1.0, August 8, 2005

Cell Broadband Engine Programming
Handbook

Version 1.0, April 19, 2006

 SPE Runtime Management Library, Version 2.0

���® Overview
6

Overview
The SPE Runtime Management Library (libspe) constitutes the standardized low-level
application programming interface (API) for application access to the Cell Broadband Engine’s
Synergistic Processing Elements (SPEs). This library provides an API that is neutral with respect
to the underlying operating system and its methods to manage SPEs.

Implementations of this library may provide additional functionality that allows for access to
operating system or implementation dependent aspects of SPE runtime management. These
capabilities are not subject to standardization in this document and their usage may lead to non-
portable code and dependencies on certain implemented versions of the library.

This document and the usage of the library require that the application programmer is familiar
with the CBE architecture as described in “Cell Broadband Engine Architecture, Version 1.0”.

In general, applications do not have control over the physical SPE resources of the system. These
resources are managed by the operating system. Applications manage and use software
constructs called SPE contexts. These SPE contexts are a logical representation of an SPE and
the base object on which the SPE Runtime Management Library operates. The operating system
will schedule SPE contexts from all running applications onto the physical SPE resources in the
system for execution according to scheduling priorities and policies associated with the runable
SPE contexts.

Furthermore, the SPE Runtime Management Library provides the means for communication and
data transfer between (PPE-) threads and SPEs.

The basic scheme for a simple application using an SPE is as follows:

1. Create an SPE context
2. Load an SPE executable object into the SPE context local store
3. Run SPE context – this transfers control to the operating system requesting the actual

scheduling of the context to a physical SPE in the system
4. Destroy SPE context

Note that step 3. above represents a synchronous call to the operating system. The calling
application will block until the SPE stops execution and the operating system returns from the
system call invoking the SPE execution.

Many applications need to use multiple SPEs concurrently. In this case, it is necessary for the
application to create at least as many threads as concurrent SPE contexts are required. Each of
these threads may run a single SPE context at a time. If N concurrent SPE contexts are needed, it
is common to have a main application thread plus N threads dedicated to SPE context execution.

The basic scheme for a simple application running N SPE contexts is as follows:

1. Create N SPE contexts
2. Load the appropriate SPE executable object into each SPE context’s local store
3. Create N threads

a. In each of these threads run one of the SPE contexts
b. Terminate thread

4. Wait for all N threads to terminate

SPE Runtime Management Library, Version 2.0

 Overview ���®
7

5. Destroy all N SPE contexts

Of course, other schemes are also possible and, depending on the application, potentially more
adequate.

In order to provide this functionality, the SPE Runtime Management Library consists of various
sets of PPE functions:

1. A set of PPE functions to create and destroy SPE and gang contexts.

2. A set of PPE functions to load SPE objects into SPE local store memory for execution.

3. A set of PPE functions to start the execution of SPE programs and to obtain information on
reasons why an SPE has stopped running.

4. A set of PPE functions to receive asynchronous events generated by an SPE.

5. A set of PPE functions used to access the MFC (Memory Flow Control) problem state
facilities, which includes

a. MFC proxy command issue

b. MFC proxy tag-group completion facility

c. Mailbox facility

d. SPE signal notification facility

6. A set of PPE functions that enable direct application access to an SPE’s local store and
problem state areas.

7. Means to register PPE-assisted library calls for an SPE program.

Terminology:
SPE context: The SPE context is one of the base data structures for the libspe implementation. It
holds all persistent information about a "logical SPE" used by the application. This data structure
should not be accessed directly; instead the application uses a pointer to an SPE context as an
identifier for the "logical SPE" it is dealing with through libspe API calls.

Gang context: The SPE gang context is one of the base data structures for the libspe
implementation. It holds all persistent information about a group of SPE contexts that should be
treated as a gang, that is, be executed together with certain properties. This data structure should
not be accessed directly; instead the application uses a pointer to an SPE gang context as an
identifier for the SPE gang it is dealing with through libspe API calls.

Main thread: The application’s main thread. In many cases, CBEA programs are multi-threaded
using multiple SPEs running concurrently. A typical scenario is that the application consists of a
main thread that creates as many SPE threads as needed and “orchestrates” them.

SPE thread: A regular thread executing on the PPE that actually runs an SPE context is called
an SPE thread. The API call spe_context_run is a synchronous, blocking call from the
perspective of the thread using it, that is, while an SPE program is executed, the associated SPE
thread blocks and will usually be put to “sleep” by the operating system.

 SPE Runtime Management Library, Version 2.0

���® Overview
8

SPE event: In a multi-threaded environment, it is often convenient to use an event mechanism
for asynchronous notification. A common usage is that the main thread sets up an event handler
to receive notification about certain events caused by the asynchronously running SPE threads.
The current library supports events to indicate that an SPE has stopped execution, mailbox
messages being written or read by an SPE, and PPE-initiated DMA operations have completed.

Library Name(s):
libspe2

Header File(s)
<libspe2.h>

SPE Runtime Management Library, Version 2.0

 Overview ���®
9

Examples
The following example shows how to load and run a simple SPE executable “hello”:

Example 1: Run the simple SPE program “hello”
#include <stdlib.h>
#include <libspe2.h>

int main()
{

spe_context_ptr_t spe;
unsigned int createflags = 0;
unsigned int runflags = 0;
unsigned int entry = SPE_DEFAULT_ENTRY;
void * argp = NULL;
void * envp = NULL;
spe_program_handle_t * program;

program = spe_image_open("hello");

spe = spe_context_create(createflags, NULL);
spe_program_load(spe, program);
spe_context_run(spe, &entry, runflags, argp, envp, NULL);
spe_image_close(program);
spe_context_destroy(spe);

}

The following simple multi-threaded example shows how an application can run the SPE
program “hello” on multiple SPEs concurrently:

Example 2: Simple multi-threaded example
#include <stdlib.h>
#include <pthread.h>
#include <libspe2.h>

#define N 4

struct thread_args {
 struct spe_context * spe;
 void * argp;
 void * envp;
};

void my_spe_thread(struct thread_args * arg) {

unsigned int runflags = 0;
unsigned int entry = SPE_DEFAULT_ENTRY;

 // run SPE context
 spe_context_run(arg->spe, &entry, runflags, arg->argp, arg->envp, NULL);
 // done - now exit thread
 pthread_exit(NULL);
}

 SPE Runtime Management Library, Version 2.0

���® Overview
10

int main() {

 pthread_t pts[N];
 spe_context_ptr_t spe[N];
 struct thread_args t_args[N];
 int value[N];
 int i;

 // open SPE program
 spe_program_handle_t * program;
 program = spe_image_open("hello");

 for (i=0; i<N; i++) {
 // create SPE context
 spe[i] = spe_context_create(0, NULL);
 // load SPE program
 spe_program_load(spe[i], program);
 // create pthread
 t_args[i].spe = spe[i];
 t_args[i].argp = &value[i];
 t_args[i].envp = NULL;
 pthread_create(&pts[i], NULL, &my_spe_thread, t_args[i]);
 }

 // wait for all threads to finish
 for (i=0; i<N; i++) {
 pthread_join (pts[i], NULL);
 }

 // close SPE program
 spe_image_close(program);

 // destroy SPE contexts
 for (i=0; i<N; i++) {
 spe_context_destroy (spe[i]);
 }

 return 0;
}

SPE Runtime Management Library, Version 2.0

 SPE Context Creation ���®
11

SPE Context Creation
The SPE context is one of the base data structures for the libspe implementation. It holds all
persistent information about a "logical SPE" used by the application. This data structure should
not be accessed directly, but the application uses a pointer to an SPE context as an identifier for
the "logical SPE" it is dealing with through libspe API calls. Before being able to use an SPE, the
SPE context data structure has to be created and initialized. This is done by calling the function
spe_context_create. Once an application no longer needs a specific SPE context, it should
release all associated resources and free the memory used by the SPE context data structure by
calling the function spe_context_destroy.

The SPE gang context is another of the base data structures for the libspe implementation. It
holds all persistent information about a group of SPE contexts that should be treated as a gang,
that is, be executed together with certain properties. This data structure should not be accessed
directly, but the application uses a pointer to an SPE gang context as an identifier for the SPE
gang it is dealing with through libspe API calls. Before being able to use an SPE gang context,
that is, before being able to add SPE contexts as members to the gang by calling
spe_context_create, the SPE gang context data structure has to be created and initialized. This is
done by calling the function spe_gang_context_create. Once an application no longer needs a
specific SPE gang context, it should release all associated resources and free the memory used by
the SPE context data structure by first destroying all SPE contexts associated with the gang by
calling spe_context_destroy on each of them and then calling the function
spe_gang_context_destroy.

 SPE Runtime Management Library, Version 2.0

���® SPE Context Creation
12

spe_context_create

C Specification
 #include <libspe2.h>

 spe_context_ptr_t spe_context_create(unsigned int flags, spe_gang_context_ptr_t gang)

Description
Create a new SPE context.

Parameters

flags A bit-wise OR of modifiers that are applied when the SPE context is
created.

The following values are accepted:

SPE_EVENTS_ENABLE Event handling shall be enabled on
this SPE context

SPE_CFG_SIGNOTIFY1_OR Configure the SPU Signal
Notification 1 Register1 to be in
“logical OR” mode instead of the
default “Overwrite” mode.

SPE_CFG_SIGNOTIFY2_OR Configure the SPU Signal
Notification 2 Register1 to be in
“logical OR” mode instead of the
default “Overwrite” mode.

SPE_MAP_PS Request permission for memory-
mapped access to the SPE’s
problem state area(s) 2.

SPE_ISOLATE This context will execute on an
SPU in the isolation mode. The
specified SPE program must be
correctly formated for isolated
execution.

gang Associate the new SPE context with this gang context. If NULL is
specified, the new SPE context will not be associated with any gang

1 See “Cell Broadband Engine Architecture, Version 1.0, section 8.7
2 See “Cell Broadband Engine Architecture, Version 1.0, chapter 8

SPE Runtime Management Library, Version 2.0

 SPE Context Creation ���®
13

Return Value
On success, a pointer to the newly created SPE context is returned. On error, NULL is returned
and errno will be set to indicate the error.

Possible errors include:

ENOMEM The SPE context could not be allocated due to lack of system
resources.

EINVAL The value passed for flags was invalid.

EPERM The process does not have permission to add threads to the designated
SPE gang context, or to use the SPU_MAP_PS setting.

ESRCH The gang context could not be found.

EFAULT A runtime error of the underlying OS service occurred.

See Also
spe_gang_context_create; spe_context_destroy;

 SPE Runtime Management Library, Version 2.0

���® SPE Context Creation
14

spe_context_destroy

C Specification
 #include <libspe2.h>

 int spe_context_destroy (spe_context_ptr_t spe)

Description
Destroy the specified SPE context and free any associated resources.

Parameters

spe Specifies the SPE context to be destroyed.

Return Value
On success, 0 is returned. On failure, -1 is returned and errno is set appropriately.

Possible errors include:

ESRCH The specified SPE context is invalid.

EAGAIN The specified SPE context cannot be destroyed at this time since it is
in use.

EFAULT A runtime error of the underlying OS service occurred.

See Also
spe_context_create;

SPE Runtime Management Library, Version 2.0

 SPE Context Creation ���®
15

spe_gang_context_create

C Specification
 #include <libspe2.h>

 spe_gang_context_ptr_t spe_gang_context_create (unsigned int flags)

Description
Create a new SPE gang context.

Parameters

flags A bit-wise OR of modifiers that are applied when the SPE context is
created.

The following values are accepted:

<none> <none>

Return Value
On success, a pointer to the newly created gang context is returned. On error, NULL is returned
and errno will be set to indicate the error.

Possible errors include:

ENOMEM The gang context could not be allocated due to lack of system
resources.

EINVAL The value passed for flags was invalid.

EFAULT A runtime error of the underlying OS service occurred.

See Also
spe_context_create; spe_gang_context_destroy;

 SPE Runtime Management Library, Version 2.0

���® SPE Context Creation
16

spe_gang_context_destroy

C Specification
 #include <libspe2.h>

 int spe_gang_context_destroy (spe_gang_context_ptr_t gang)

Description
Destroy the specified gang context and free any associated resources.

Before destroying a gang context, you must destroy all associated SPE contexts using
spe_context_destroy.

Parameters

gang Specifies the gang context to be destroyed.

Return Value
On success, 0 is returned. On failure, -1 is returned and errno is set appropriately.

Possible errors include:

ESRCH The specified gang context is invalid.

EAGAIN The specified gang context cannot be destroyed at this time since it is
in use.

EFAULT A runtime error of the underlying OS service occurred.

See Also
spe_gang_context_create; spe_context_destroy;

SPE Runtime Management Library, Version 2.0

 SPE Program Image Handling ���®
17

SPE Program Image Handling
Before being able to run an SPE context, an SPE program has to be loaded into the SPE’s local
store. This is done by the function spe_program_load. The SPE program can either be an
independent ELF image in a file or it can be embedded in the main thread executable in special
sections. The first case requires that the SPE program image is loaded into memory by calling
spe_image_open. Details on SPE executables can be found in “Cell Broadband Engine
Programming Handbook, Version 1.0”, chapter 14 “Objects, Executables, and SPE Loading”

 SPE Runtime Management Library, Version 2.0

���® SPE Program Image Handling
18

spe_image_open

C Specification
 #include <libspe2.h>

 spe_program_handle_t * spe_image_open (const char *filename)

Description
spe_open_image opens an SPE ELF executable indicated by filename and maps it into system
memory. The result is a pointer to an SPE program handle which can then be used with
spe_program_load to load this SPE main program into the local store of an SPE before running
it with spe_context_run. The application needs "execute" access rights to the file with the SPE
executable. SPE ELF objects loaded using this function are not shared with other
applications/processes.

It is sometime more convenient to embed SPE ELF objects directly within the PPE executable
using the linker and an "embed_spu" (or equivalent) tool (see toolchain documentation). In this
case, SPE ELF objects are converted to PPE static or shared libraries with symbols which will
point to the SPE ELF objects after these special libraries are loaded. These libraries are then
linked with the associated PPE code to provide a direct symbol reference to the SPE ELF object.
The symbols in this scheme are equivalent to the address returned from the spe_image_open
function and can be used as SPE program handles by spe_program_load. SPE ELF objects
created using the embedding approach can be shared between processes.

Parameters

filename Specifies the filename of an SPE ELF executable to be loaded and
mapped into system memory.

Return Value
On success, spe_open_image returns the address at which the specified SPE ELF object has been
mapped. On failure, NULL is returned and errno is set

Possible errors include:

EACCES The calling process does not have the necessary permissions to access
the specified file.

EFAULT The filename parameter points to an address that was not contained in
the calling process`s address space.

other A number of other errno values could be returned by the open(2),
fstat(2), or mmap(2) system calls which may be utilized by the
spe_image_open function.

See Also
spe_program_load; spe_context_run; spe_image_close;

SPE Runtime Management Library, Version 2.0

 SPE Program Image Handling ���®
19

spe_image_close

C Specification
 #include <libspe2.h>

 int spe_image_close (spe_program_handle_t *program)

Description
spe_close_image unmaps and closes an SPE ELF object that was previously opened and mapped
using spe_open_image.

Parameters

program A valid address of a mapped SPE program.

Return Value
On success, 0 is returned. On failure, -1 is returned and errno is set appropriately.

Possible errors include:

EINVAL The specified address of the SPE program is invalid.

other A number of other errno values could be returned by the munmap(2)
or close(2) system calls which may be utilized by the
spe_image_open function.

See Also
spe_image_open;

 SPE Runtime Management Library, Version 2.0

���® SPE Program Image Handling
20

spe_program_load

C Specification
 #include <libspe2.h>

 int spe_program_load (spe_context_ptr_t spe, spe_program_handle_t *program)

Description
spe_program_load loads an SPE main program that has been mapped to memory at the address
pointed to by program into the local store of the SPE identified by the SPE context spe. This is
mandatory before running the SPE context with spe_context_run.

Parameters

spe A valid pointer to the SPE context for which an SPE program should
be loaded.

program A valid address of a mapped SPE program.

Return Value
On success, 0 is returned. On failure, -1 is returned and errno is set appropriately.

Possible errors include:

ESRCH The specified SPE context is invalid.

EINVAL The specified address of the SPE program is invalid.

See Also
spe_image_open; spe_context_run;

SPE Runtime Management Library, Version 2.0

 SPE Run Control ���®
21

SPE Run Control
After creating an SPE context and loading an SPE program into its local store, the application
can run an SPE context by calling spe_context_run. A thread that executes an SPE context is
called an SPE thread. The API function is a synchronous, blocking call from the perspective of
the thread using it, that is, while an SPE program is executed, the associated SPE thread blocks
and will usually be put to “sleep” by the operating system. When the SPE program stops – either
because of reaching its “normal” exit point,a stop and signal instruction or an error condition –
the spe_context_run function returns and its return values specify the exact condition why the
SPE program stopped.

Many applications need to use multiple SPEs concurrently. In this case, it is necessary for the
application to create at least as many threads, by using standard methods of the operating system,
as concurrent SPE contexts are required. Each of these threads may run a single SPE context at a
time. If N concurrent SPE contexts are needed, it is, however, common to use N+1 threads: one
main (application) thread that “orchestrates” the execution of N SPE threads.

In a multi-threaded environment, it is often convenient to use an event mechanism3 for
asynchronous notification about certain events caused by the asynchronously running SPE
threads. A specific event indicates that an SPE context was stopped in the SPE thread. The
function spe_stop_info_read allows the main thread to read the full information about the stop
reason.

3 See section “SPE Event Handling” in this document

 SPE Runtime Management Library, Version 2.0

���® SPE Run Control
22

spe_context_run

C Specification
#include <libspe2.h>

int spe_context_run (spe_context_ptr_t spe, unsigned int *entry, unsigned int runflags,
void *argp, void *envp, spe_stop_info_t *stopinfo)

Description
The function spe_context_run requests execution of an SPE context on a physical SPE resource
of the system. It is necessary that a SPE program has been loaded (using spe_program_load)
before running the SPE context.

The thread calling spe_context_run will block and wait until the SPE stops, either because of
normal termination of the SPE program, an SPU stop and signal instruction, or some error
condition. When spe_context_run returns, the calling thread must take appropriate actions
depending on the application logic.

spe_context_run returns information about the termination of the SPE program in three ways.
This allows applications to deal with termination conditions on various levels. First, the most
common usage for many applications is covered by the return value of the function and the errno
value being set appropriately. Second, the optional stopinfo structure provides detailed
information of the termination condition in a structured way that allows applications more fine-
grained error handling and implementation of special scenarios. Third, the stopinfo structure
contains the field spu_status that contains the value of the CBEA SPU Status Register
(SPU_Status) as specified in the “Cell Broadband Engine Architecture, Version 1” in section
8.5.2 upon termination of the SPE program. This can be very useful, especially in conjunction
with the SPE_NO_CALLBACKS flag, for applications that run “non-standard” SPE programs
and want to react flexible on all possible conditions and not rely on pre-defined conventions.

Parameters

spe A valid pointer to the SPE context that should be run.

entry Input: The entry point, that is, the initial value of the SPU instruction
pointer, at which the SPE program should start executing. If the value of
entry is SPE_DEFAULT_ENTRY, the default entry point for the SPU
main program obtained from the loaded SPE image will be used. This is
usually the local store address of the initialization function crt04.

Output: The SPU instruction pointer at the moment the SPU stopped
execution, that is, the local store address of the next instruction that
would be have been executed.

4 See “Cell Broadband Engine Programming Handbook, Version 1.0”, chapter 14 “Objects, Executables, and SPE
Loading”

SPE Runtime Management Library, Version 2.0

 SPE Run Control ���®
23

This parameter can be used, for example, to allow the SPE program to
“pause” and request some action from the PPE thread, for example,
performing an I/O operation. After this PPE-side action has been
completed, the SPE program can be continued by simply calling
spe_context_run again without changing entry.

runflags A bitmask that can be used to request certain specific behavior for the
execution of the SPE context. If the value is 0, this indicates default
behavior.

The following flags are valid. Multiple flags can be combined using bit-
wise OR.

SPE_RUN_USER_REGS Specifies that the SPE setup registers r3,
r4, and r5 are initialized with the 48 bytes
pointed to by argp

SPE_NO_CALLBACKS Specifies that registered SPE library calls
(“callbacks” from this library’s view)
should not be automatically executed. If a
callback is encountered. This also
disables callbacks that are predefined in
the library implementation. See also
section “PPE-assisted library calls” for
more details.

spe_context_run will return as if the
SPU would have issues a regular stop and
signal instruction. The signal code will be
returned as part of stopinfo.

argp An (optional) pointer to application specific data, and is passed as the
second parameter to the SPE program. (See Note)

envp An (optional) pointer to environment specific data, and is passed as the
third parameter to the SPE program. (See Note)

stopinfo An (optional) pointer to a structure of type spe_stop_info_t (specified
below).

If stopinfo is a valid pointer, the structure will be filled with all
information available as to the reason why the SPE program stopped
execution. This information is important for some advanced
programming patterns and/or detailed error reporting.

If stopinfo is NULL, no information beyond the return value (specified
below) as to the reason and associated data why the SPE program
stopped execution will be returned. This is sufficient for many
applications.

 SPE Runtime Management Library, Version 2.0

���® SPE Run Control
24

When spe_context_run returns, it provides information about the exact conditions in which the
SPE stopped program execution in the data structure pointed to by stopinfo. If stopinfo is NULL,
this information will not be returned by the call.

The data type is spe_stop_info_t which is defined as follows:

typedef struct spe_stop_info {
 unsigned int stop_reason;
 union {
 int spe_exit_code;
 int spe_signal_code;
 int spe_runtime_error;
 int spe_runtime_exception;
 int spe_runtime_fatal;
 int spe_callback_error;
 void *__reserved_ptr;

unsigned long long __reserved_u64;
 } result;
 int spu_status;
} spe_stop_info_t;

The valid values for stop_reason are defined by the following constants:

SPE_EXIT SPE program terminated calling exit(code) with code
in the range 0..255. The code will be saved in
spe_exit_code.

SPE_STOP_AND_SIGNAL SPE program stopped because SPU executed a stop
and signal instruction. Further information in field
spe_signal_code.

SPE_RUNTIME_ERROR SPE program stopped because of a one of the reasons
found in spe_runtime_error.

SPE_RUNTIME_EXCEPTION SPE program stopped asynchronously because of an
runtime exception (event) described in
spe_runtime_exception. In this case, spe_status would
be meaningless and is therefore set to -1.

Linux Note: This error situation can only be caught
and reported by spe_context_run if the SPE context
was created with the flag SPE_EVENTS_ENABLE
indicated that event support is requested. Otherwise
the Linux kernel will generate a signal to indicate the
runtime error.

SPE_RUNTIME_FATAL SPE program stopped for other reasons, usually fatal
operating system errors such as insufficient resources.
Further information in spe_runtime_fatal.
In this case, spe_status would be meaningless and is
therefore set to -1.

SPE Runtime Management Library, Version 2.0

 SPE Run Control ���®
25

SPE_CALLBACK_ERROR A library callback returned a non-zero exit value,
which is provided in spe_callback_error.
spe_status contains the information about the failed
library callback (spe_status & 0x3fff0000 is the stop
code which led to the library callback.)

Depending on stop_reason more specific information is provided in the result field:

spe_exit_code Exit code returned by the SPE program in the range 0..2555

spe_signal_code Stop and signal code sent by the SPE program. The lower 14-
bit of this field contain the signal number5.

spe_runtime_error SPE_SPU_HALT SPU was stopped by
halt

SPE_SPU_SINGLE_STEP SPU is in single-step
mode

SPE_SPU_INVALID_INSTR SPU has tried to
execute an invalid
instruction

SPE_SPU_INVALID_CHANNEL SPU has tried to access
an invalid channel

spe_runtime_exception SPE_DMA_ALIGNMENT A DMA alignment error

SPE_DMA_SEGMENTATION A DMA segmentation
error

SPE_DMA_STORAGE A DMA storage error
spe_runtime_fatal Contains the (implementation-dependent) errno as set by the

underlying system call that failed.

spe_callback_error Contains the return code from the failed library callback.

The field spu_status contains the value of the architected “SPU Status Register (SPU_Status)” as
defined in the Cell Broadband Engine Architecture V1.0 in section 8.5.2 at the point in time the
SPU stopped execution. In some circumstances, for example, asynchronous errors such as DMA
alignment errors, this value would be meaningless and therefore a value of -1 is returned to
indicate that situation.

The content of spu_status is fully reflected in the stop_reason and subsequent field and is
returned to allow low-level application their own, direct interpretation of SPU_Status directly
following the CBE Architecture specification. Most applications will not need this field.

5 The convention for stop and signal usage by SPE programs is that 0x2000-0x20FF are exit events. 0x2100-0x21FF
are callback events. 0x0 is an invalid instruction runtime error. Signal codes 0x0001-0x1FFF are user-defined
signals. This convention determines the mapping to the respective fields in stopinfo.

 SPE Runtime Management Library, Version 2.0

���® SPE Run Control
26

Return Value
On success, 0 or a positive number is returned.

A return value of 0 indicates that the SPE program terminated normally by calling exit(). The
actual exit value can be obtained from stopinfo.

A positive return value indicates that the SPE has stopped because the SPU issued a stop and
signal instruction and the return value represents the 14-bit value set by that stop and signal
instruction.

On failure, -1 is returned and errno is set appropriately.

Possible errors include:

ESRCH The specified SPE context is invalid.

EINVAL Invalid parameters.

EIO An SPE I/O error occurred, for example, a misaligned DMA. Details
can be found in stopinfo.

EFAULT Some other SPE runtime problem occurred. Details can be found in
stopinfo.

See Also
spe_context_create, spe_program_load,

Note
Argument passing to SPE programs:
An application may pass arguments to an SPE program by using argp, envp, and the
SPE_RUN_USER_REGS flag above. The SPE registers r3, r4, and r5 are initialized according to
the following scheme:

If SPE_RUN_USER_REGS is not set, then the registers are initialized as follows:

 r3 spe - the address of the SPE context being run
 r4 argp - usually a pointer to argv of the main program
 r5 envp - usually the environment pointer of the main program

All 32 or 64-bit pointers are put into the correct preferred slots for the 128-bit SPE registers.

If SPE_RUN_USER_REGS is set, then the registers are initialized with a copy of an
(uninterpreted) 48-byte user data field pointed to by argp. envp is ignored in this case.

SPE Runtime Management Library, Version 2.0

 SPE Run Control ���®
27

spe_stop_info_read

C Specification
#include <libspe2.h>

int spe_stop_info_read (spe_context_ptr_t spe, spe_stop_info_t *stopinfo)

Description
Read information about the exact conditions in which the SPE identified by spe stopped program
execution, corresponding to the last SPE_EVENT_STOPPED event.

This function is intended for usage in a multi-threaded environment. An SPE thread would run
the SPE context using spe_context_run. A main thread would be able to receive stop events,
whenever the spe_context_run call returns, that is the SPE stops, in the SPE thread.

This is a non-blocking call. If the information does not exist, for example, because the context
has never been run, or has already been read, for example, by another thread, the function will
return an error with errno set to EAGAIN.

This function requires that the SPE context spe has been created with event support, that is, the
SPE_EVENTS_ENABLE flag has been set. Otherwise, it will return an error ENOTSUP.

Parameters

spe A valid pointer to the SPE context for which stop information is
requested.

stopinfo A pointer to a structure of type spe_stop_info_t (specified in
spe_context_run). The structure will be filled with all information
available as to the reason why the SPE program stopped execution.

Return Value
On success, 0 is returned. On failure, -1 is returned and errno is set appropriately.

Possible errors include:

ESRCH The specified SPE context is invalid.

EAGAIN No data available.

ENOTSUP Event processing is not enabled for this SPE context.

See Also
spe_context_run;

 SPE Runtime Management Library, Version 2.0

���® SPE Event Handling
28

SPE Event Handling
In a multi-threaded environment, it is often convenient to use an event mechanism for
asynchronous notification. A common usage is that the main thread sets up an event handler to
receive notification about certain events caused by the asynchronously running SPE threads, see
spe_event_handler_create and spe_event_handler_register. It then uses an event loop to wait
for events, using spe_event_wait, and performs appropriate actions in response. The current
library supports events to indicate that an SPE has stopped execution, mailbox messages being
written or read by an SPE, and PPE-initiated DMA operations have completed. In order to obtain
details associated with the event, the application has to perform a separate action, for example,
call spe_stop_info_read to obtain the full information on the stop reason for an SPE context,
call spe_out_intr_mbox_read to actually read the message from the SPE mailbox or call
spe_mfcio_tag_status_read to know which tag groups completed.

SPE Runtime Management Library, Version 2.0

 SPE Event Handling ���®
29

spe_event_handler_create

C Specification
 #include <libspe2.h>

spe_event_handler_ptr_t spe_event_handler_create(void)

Description
Create a SPE event handler and return a pointer to it.

Parameters

void none

Return Value
On success, a valid pointer to an SPE event handler is returned. On failure, NULL is returned
and errno is set appropriately.

Possible errors include:

ENOMEM The SPE event handler could not be allocated due to lack of system
resources.

EFAULT A runtime error of the underlying OS service occurred.

See Also
spe_event_handler_destroy;

 SPE Runtime Management Library, Version 2.0

���® SPE Event Handling
30

spe_event_handler_destroy

C Specification
 #include <libspe2.h>

 int spe_event_handler_destroy (spe_event_handler_ptr_t evhandler);

Description
Destroy a SPE event handler and free all resources associated with it.

Parameters

evhandler A valid pointer to the SPE event handler to be destroyed.

Return Value
On success, 0 is returned. On failure, -1 is returned and errno is set appropriately.

Possible errors include:

ESRCH The specified SPE event handler is invalid.

EAGAIN The specified SPE event handler cannot be destroyed at this time since
it is in use, that is an spe_event_wait call is currently active waiting
on this handler.

EFAULT A runtime error of the underlying OS service occurred.

See Also
spe_event_handler_create; spe_event_wait;

SPE Runtime Management Library, Version 2.0

 SPE Event Handling ���®
31

spe_event_handler_register

C Specification
 #include <libspe2.h>

 int spe_event_handler_register(spe_event_handler_ptr_t evhandler, spe_event_unit_t *event);

Description
Register the application’s interest in SPE events of the specified nature as defined in the event
structure.

This function requires that the SPE context spe in event has been created with event support, that
is, the SPE_EVENTS_ENABLE flag has been set. Otherwise, it will return an error ENOTSUP.

Parameters

evhandler A valid pointer to the SPE event handler.

event A valid pointer to an SPE event structure.

The data structure spe_event_unit_t is defined as follows:

typedef struct spe_event_unit
{
 unsigned int events;
 spe_context_ptr_t spe;
 spe_event_data_t data;
} spe_event_unit_t;

The field events specifies a bitmask to request certain SPE events to be delivered to the
application. Multiple events can be requested at once by using bit-wise OR.

The following events are supported:

SPE_EVENT_OUT_INTR_MBOX Data available to be read from the SPU outbound
interrupting mailbox. This event will be generated, if
the SPU has written at least one entry to the SPU
outbound interrupting mailbox (see
spe_out_intr_mbox_read).

SPE_EVENT_IN_MBOX Data can now be written to the SPU inbound
mailbox. This event will be generated, if the SPU
inbound mailbox had been full and the SPU read at
least on entry, so that now it can be written to the
SPU inbound mailbox again (see spe_in_mbox
write).

SPE_EVENT_TAG_GROUP An SPU event tag group signaled completion (see
spe_mfcio_tag_status_read).

 SPE Runtime Management Library, Version 2.0

���® SPE Event Handling
32

SPE_EVENT_SPE_STOPPED Program execution on the SPE has stopped. (see
spe_stop_info_read).

SPE_EVENT_ALL_EVENTS Interest in all defined SPE events – this corresponds
to a bit-wise OR of all flags above.

The field spe is a pointer to an SPE context for which the events have to be registered.

The structure spe_event_unit contains a field data of type spe_event_data that is intended to hold
user data. The value of this field will be returned to the application by spe_event_wait
unmodified, whenever an event as specified here occurs.

typedef union spe_event_data
{
 void *ptr;
 unsigned int u32;
 unsigned long long u64;
} spe_event_data_t;

Return Value
On success, 0 is returned. On failure, -1 is returned and errno is set appropriately.

Possible errors include:

ESRCH The specified SPE event handler is invalid.

EINVAL The specified pointer to an SPE event structure is invalid

ENOTSUP At least one of the requested events specified in events is not
supported or invalid or the SPE context does not support events.

EFAULT A runtime error of the underlying OS service occurred.

See Also
spe_event_handler_deregister; spe_event_wait; spe_out_intr_mbox_read; spe_in_mbox_write;
spe_mfcio_tag_status_read; spe_stop_info_read;

SPE Runtime Management Library, Version 2.0

 SPE Event Handling ���®
33

spe_event_handler_deregister

C Specification
 #include <libspe2.h>

 int spe_event_handler_deregister(spe_event_handler_ptr_t evhandler,
spe_event_unit_t *event);

Description
Deregister the application’s interest in SPE events of the specified nature as defined in the event
structure.

It is no error to deregister interest in events that have not been registered before. Therefore, all
events on a specific evhandler and spe can be always deregistered with a single function call
using the SPE_EVENT_ALL_EVENTS mask.

This function requires that the SPE context spe in event has been created with event support, that
is, the SPE_EVENTS_ENABLE flag has been set. Otherwise, it will return an error ENOTSUP.

Parameters

evhandler A valid pointer to the SPE event handler.

event A valid pointer to an SPE event structure.

The spe_event_unit_t data structure and its usage are specified in spe_event_handler_register.
A single call to this interface can deregister multiple events at the same time. The field spe in
event is a pointer to an SPE context for which the events have to be deregistered. The field data
will be ignored by this call.

Return Value
On success, 0 is returned. On failure, -1 is returned and errno is set appropriately.

Possible errors include:

ESRCH The specified SPE event handler is invalid.

EINVAL The specified pointer to an SPE event structure is invalid

ENOTSUP At least one of the requested events specified in events is not
supported or invalid or the SPE context does not support events.

EFAULT A runtime error of the underlying OS service occurred.

See Also
spe_event_handler_register; spe_event_wait; spe_out_intr_mbox_read; spe_in_mbox_write;
spe_mfcio_tag_status_read; spe_stop_info_read;

 SPE Runtime Management Library, Version 2.0

���® SPE Event Handling
34

spe_event_wait

C Specification
 #include <libspe2.h>

 int spe_event_wait(spe_event_handler_ptr_t evhandler, spe_event_unit_t *events,
int max_events, int timeout);

Description
Wait for SPE events.

Parameters

evhandler A valid pointer to the SPE event handler.

events The pointer to the memory area where the events will be stored. The
'events' member will contain the event bit field indicating the actual
event received, and the 'spe' member will contain pointer to the SPE
context that generated the event.

For the specification of spe_event_unit_t, see
spe_event_handler_register.

max_events Maximum number of 'events' to receive. The call will return if at least
one event as been received – or if it times out.

timeout Timeout in milliseconds. -1 means 'infinite'. 0 means that the call
should not wait but return immediately with as many events as are
currently available up to a maximum of max_events.

Return Value
On success, the number of SPE events received. If 0 is returned, no SPE event was received
because the request timed out. On failure, -1 is returned and errno is set appropriately.

Possible errors include:

ESRCH The specified SPE event handler is invalid.

EINVAL Error in parameters.

EFAULT A runtime error of the underlying OS service occurred.

See Also
spe_event_handler_register; spe_event_handler_deregister; spe_out_intr_mbox_read;
spe_in_mbox_write; spe_mfcio_tag_status_read; spe_stop_info_read;

SPE Runtime Management Library, Version 2.0

 SPE MFC Problem State Facilities ���®
35

SPE MFC Problem State Facilities

SPE MFC Proxy Command Issue
This set of functions provides PPE-initiated DMA6 functionality through the usage of the SPE
MFC Proxy Command Issue facility. Main threads may use these functions to move data to and
from an SPE local store area. Note that the naming of the commands is based on a SPE centric
view, for example, “put” means a transfer from the SPE local store to an effective address valid
in the main thread.

6 See “Cell Broadband Engine Architecture, Version 1.0”, chapter 7 and section 8.2 and 8.3

 SPE Runtime Management Library, Version 2.0

���® SPE MFC Problem State Facilities
36

spe_mfcio_put, spe_mfcio_putb, spe_mfcio_putf

C Specification
 #include <libspe2.h>

 int spe_mfcio_put (spe_context_ptr_t spe, unsigned int lsa, void *ea, unsigned int size,
unsigned int tag, unsigned int tid, unsigned int rid)

int spe_mfcio_putb (spe_context_ptr_t spe, unsigned int lsa, void *ea, unsigned int size,
unsigned int tag, unsigned int tid, unsigned int rid)

int spe_mfcio_putf (spe_context_ptr_t spe, unsigned int lsa, void *ea, unsigned int size,
unsigned int tag, unsigned int tid, unsigned int rid)

Description
The spe_mfc_put function places a get DMA command on the proxy command queue of the
SPE context specified by spe. The put command transfers size bytes of data starting at the local
store address specified by lsa to the effective address specified by ea. The DMA is identified by
the tag id specified by tag and performed according transfer class and replacement class
specified by tid and rid respectively.

The spe_mfc_putb function is identical to spe_mfc_put except that it places a putb (put with
barrier) DMA command on the proxy command queue. The barrier form ensures that this
command and all sequence commands with the same tag identifier as this command are locally
ordered with respect to all previously issued commands with the same tag group and command
queue.

The spe_mfc_putf function is identical to spe_mfc_put except that it places a putf (put with
fence) DMA command on the proxy command queue. The fence form ensures that this command
is locally ordered with respect to all previously issued commands with the same tag group and
command queue.

The caller of these functions must ensure that the address alignments and transfer size is in
accordance with the limitation and restrictions of the Cell Broadband Engine Architecture.

Parameters

spe Specifies the SPE context whose proxy command queue the put
command is to be placed into.

lsa Specifies the starting local store source address.

ea Specifies the starting effective address destination address.

size Specifies the size, in bytes, to be transferred.

SPE Runtime Management Library, Version 2.0

 SPE MFC Problem State Facilities ���®
37

tag Specifies the tag id used to identify the DMA command. The range for
valid tag ids is 0:317

tid Specifies the transfer class identifier of the DMA command.

rid Specifies the replacement class identifier of the DMA command.

Return Value
On success, 0 is returned. On failure, -1 is returned and errno is set appropriately.

Possible errors include:

ESRCH The specified SPE context is invalid.

See Also

7 See “Cell Broadband Engine Architecture, Version 1.0”, section 8.1.3

 SPE Runtime Management Library, Version 2.0

���® SPE MFC Problem State Facilities
38

spe_mfcio_get, spe_mfcio_getb, spe_mfcio_getf

C Specification
 #include <libspe2.h>

int spe_mfcio_get (spe_context_ptr_t spe, unsigned int lsa, void *ea, unsigned int size,
unsigned int tag, unsigned int tid, unsigned int rid)

int spe_mfcio_getb (spe_context_ptr_t spe, unsigned int lsa, void *ea, unsigned int size,
unsigned int tag, unsigned int tid, unsigned int rid)

int spe_mfcio_getf (spe_context_ptr_t spe, unsigned int lsa, void *ea, unsigned int size,
unsigned int tag, unsigned int tid, unsigned int rid)

Description
The spe_mfc_get function places a get DMA command on the proxy command queue of the
SPE context specified by spe. The get command transfers size bytes of data starting at the
effective address specified by ea to the local store address specified by lsa. The DMA is
identified by the tag id specified by tag and performed according transfer class and replacement
class specified by tid and rid respectively.

The spe_mfc_getb function is identical to spe_mfc_get except that it places a getb (get with
barrier) DMA command on the proxy command queue. The barrier form ensures that this
command and all sequence commands with the same tag identifier as this command are locally
ordered with respect to all previously issued commands with the same tag group and command
queue.

The spe_mfc_getf function is identical to spe_mfc_get except that it places a getf (get with
fence) DMA command on the proxy command queue. The fence form ensure that this command
is locally ordered with respect to all previously issued commands with the same tag group and
command queue.

The caller of these functions must ensure that the address alignments and transfer size is in
accordance with the limitation and restrictions of the Cell Broadband Engine Architecture.

Parameters

spe Specifies the SPE context into which proxy command queue the get
command is to be placed into.

lsa Specifies the starting local store destination address.

ea Specifies the starting effective address source address.

size Specifies the size, in bytes, to be transferred.

SPE Runtime Management Library, Version 2.0

 SPE MFC Problem State Facilities ���®
39

tag Specifies the tag id used to identify the DMA command. The range for
valid tag ids is 0:318

tid Specifies the transfer class identifier of the DMA command.

rid Specifies the replacement class identifier of the DMA command.

Return Value
On success, 0 is returned. On failure, -1 is returned and errno is set appropriately.

Possible errors include:

ESRCH The specified SPE context is invalid.

See Also

8 See “Cell Broadband Engine Architecture, Version 1.0”, section 8.1.3

 SPE Runtime Management Library, Version 2.0

���® SPE MFC Problem State Facilities
40

SPE MFC Proxy Tag-Group Completion Facility

spe_mfcio_tag_status_read

C Specification
 #include <libspe2.h>

 int spe_mfcio_tag_status_read(spe_context_ptr_t spe, unsigned int mask,
unsigned int behavior, unsigned int *tag_status)

Description
The spe_mfc_tag_status_read function is used to check the completion of DMA requests
associated with the tag groups specified by the optional mask parameter. A mask of value ‘0’
indicates that all current DMA requests should be taken into account. The behavior field
specifies whether all or any of the specified tag groups have to be completed, or whether it just
checks current completion status.

The non-blocking reading of the tag status by specifying SPE_TAG_IMMEDIATE is especially
advantageous when combining with SPE event handling. Note that after receiving a tag group
completion event, the tag status has to be read before another DMA is started on the same SPE.

Parameters

spe Specifies the SPE context for which DMA completion status is to be
checked.

mask The mask parameter can be set to 0 indicating that all current DMA
requests should be taken into account. This will take into account only
those DMAs started using libspe library calls, since the library and
operating system have no way to know about DMA initiated by
applications using direct problem state access. A non-zero value has to
be specified according to the “Cell Broadband Engine Architecture,
Version 1.0”, section 8.4.3. Each of the bits 0:31 of this mask
corresponds to a tag group. These tag groups may include those used
for DMA started using application direct problem state access.

behavior Specifies the behavior of the operation. The value can be one of:

SPE_TAG_ALL The function suspends execution until
all DMA commands in the tag groups
enabled by the mask parameter have no
outstanding DMAs in the proxy
command queue of the SPE context
specified by spe. The masked tag status
is returned.

SPE Runtime Management Library, Version 2.0

 SPE MFC Problem State Facilities ���®
41

SPE_TAG_ANY The function suspends execution until
any DMA commands in the tag groups
enabled by the mask parameter have no
outstanding DMAs in the proxy
command queue of the SPE context
specified by spe. The masked tag status
is returned.

SPE_TAG_IMMEDIATE The function returns the tag status for
the tag groups specified by the mask
parameter for the proxy command
queue of the SPE context specified by
the spe.

tag_status Result: the current tag status for tags specified by mask is returned.

Return Value
On success, 0 is returned. On failure, -1 is returned and errno will be set appropriately.

Possible errors include:

ESRCH The specified SPE context is invalid.

ENOTSUP The usage of a non-zero mask parameter is not supported by this
implementation of the library or underlying OS.

See Also
spe_mfcio_get, spe_mfcio_getb, spe_mfcio_getf, spe_mfcio_put, spu_mfcio_putb,
spu_mfcio_putf

 SPE Runtime Management Library, Version 2.0

���® SPE MFC Problem State Facilities
42

SPE Mailbox Facility
This set of functions allows a main thread to communicate with an SPE through its mailbox
facility. Note that the naming of the mailboxes is based on a SPE centric view, for example,
“out_mbox” is the outbound mailbox for the SPE and the corresponding library function is
spe_out_mbox_read to read the mailbox message from the main thread.

SPE Runtime Management Library, Version 2.0

 SPE MFC Problem State Facilities ���®
43

spe_out_mbox_read

C Specification
 #include <libspe2.h>

 int spe_out_mbox_read (spe_context_ptr_t spe, unsigned int *mbox_data, int count)

Description
This function reads up to count available messages from the SPE outbound mailbox for the SPE
context spe. This is a non-blocking function call. If less than count mailbox entries are available,
only those will be read.

spe_out_mbox_status can be called to ensure that data is available prior to reading the outbound
mailbox.

Parameters

spe Specifies the SPE context for which the SPU outbound mailbox has to
be read.

mbox_data A pointer to an array of unsigned integers of size count to receive the
32-bit mailbox messages read by the call.

count The maximum number of mailbox entries to be read by this call.

Return Value
 >0 the number of 32-bit mailbox messages read

 0 no data read

 -1 error condition and errno is set appropriately

Possible errors include:

ESRCH The specified SPE context is invalid.

EIO An I/O error occurred.

See Also
spe_out_mbox_status;

 SPE Runtime Management Library, Version 2.0

���® SPE MFC Problem State Facilities
44

spe_out_mbox_status

C Specification
 #include <libspe2.h>

 int spe_out_mbox_status (spe_context_ptr_t spe)

Description
The spe_out_mbox_status function fetches the status of the SPU outbound mailbox for the SPE
context specified by the spe parameter. A 0 value is return if the mailbox is empty. A non-zero
value specifies the number of 32-bit unread mailbox entries.

Parameters

spe Specifies the SPE context for which the SPU outbound mailbox has to
be read.

Return Value
>0 the number of 32-bit mailbox messages available for read

0 no data available

-1 error condition and errno is set appropriately

Possible errors include:

ESRCH The specified SPE context is invalid.

EIO An I/O error occurred.

See Also
spe_out_mbox_read;

SPE Runtime Management Library, Version 2.0

 SPE MFC Problem State Facilities ���®
45

spe_in_mbox_write

C Specification
 #include <libspe2.h>

 int spe_in_mbox_write (spe_context_ptr_t spe, unsigned int *mbox_data, int count,
unsigned int behavior)

Description
This function writes up to count messages to the SPE inbound mailbox for the SPE context spe.
This call may be blocking or non-blocking, depending on behavior.

The blocking version of this call is particularly useful to send a sequence of mailbox messages to
an SPE program without further need for synchronization. The non-blocking version may be
advantageous when using SPE events for synchronization in a multi-threaded application.

spe_in_mbox_status can be called to ensure that data can be written prior to writing the SPU
inbound mailbox.

Parameters

spe Specifies the SPE context for which the SPU inbound mailbox has to
be written.

mbox_data A pointer to an array of unsigned integers of size count holding the
32-bit mailbox messages to be written by the call

count The maximum number of mailbox entries to be written by this call

behavior Specifies whether the call should be blocking or non-blocking.
Possible values are:

SPE_MBOX_ALL_BLOCKING The call will block until
all count mailbox
messages have been
written.

SPE_MBOX_ANY_BLOCKING The call will block until at
least one mailbox message
has been written.

SPE_MBOX_ANY_NONBLOCKING The call will write as
many mailbox messages
as possible up to a
maximum of count
without blocking.

Return Value
 >0 the number of 32-bit mailbox messages written

 SPE Runtime Management Library, Version 2.0

���® SPE MFC Problem State Facilities
46

 0 no mailbox message could be written

 -1 error condition and errno is set appropriately

Possible errors include:

ESRCH The specified SPE context is invalid.

EIO An I/O error occurred.

See Also
spe_in_mbox_status;

SPE Runtime Management Library, Version 2.0

 SPE MFC Problem State Facilities ���®
47

spe_in_mbox_status

C Specification
 #include <libspe2.h>

 int spe_in_mbox_status (spe_context_ptr_t spe)

Description
The spe_in_mbox_status function fetches the status of the SPU inbound mailbox for the SPE
context specified by the spe parameter. A 0 value is return if the mailbox is full. A non-zero
value specifies the number of available (32-bit) mailbox entries.

Parameters

spe Specifies the SPE context for which the SPU outbound mailbox has to
be read.

Return Value
>0 the number of 32-bit mailbox messages that can be written

0 no data can be written (mailbox full)

-1 error condition and errno is set appropriately

Possible errors include:

ESRCH The specified SPE context is invalid.

EIO An I/O error occurred.

See Also
spe_in_mbox_write;

 SPE Runtime Management Library, Version 2.0

���® SPE MFC Problem State Facilities
48

spe_out_intr_mbox_read

C Specification
 #include <libspe2.h>

 int spe_out_intr_mbox_read (spe_context_ptr_t spe, unsigned int *mbox_data, int count,
unsigned int behavior)

Description
This function reads up to count messages from the SPE outbound interrupting mailbox for the
SPE context spe. This call may be blocking or non-blocking, depending on behavior.

The blocking version of this call is particularly useful to send a sequence of mailbox messages to
an SPE program without further need for synchronization. The non-blocking version may be
advantageous when using SPE events for synchronization in a multi-threaded application.

spe_out_intr_mbox_status can be called to ensure that data can be written prior to writing the
SPU outbound interrupting mailbox.

Parameters

spe Specifies the SPE context for which the SPU inbound mailbox has to
be written.

mbox_data A pointer to an array of unsigned integers of size count holding the
32-bit mailbox messages to be written by the call

count The maximum number of mailbox entries to be read by this call

behavior Specifies whether the call should be blocking or non-blocking.
Possible values are:

SPE_MBOX_ALL_BLOCKING The call will block until
all count mailbox
messages have been read.

SPE_MBOX_ANY_BLOCKING The call will block until at
least one mailbox message
has been read.

SPE_MBOX_ANY_NONBLOCKING The call will read as many
mailbox messages as
possible up to a maximum
of count without blocking.

Return Value
 >0 the number of 32-bit mailbox messages read

 0 no mailbox message read

SPE Runtime Management Library, Version 2.0

 SPE MFC Problem State Facilities ���®
49

 -1 error condition and errno is set appropriately

Possible errors include:

ESRCH The specified SPE context is invalid.

EIO An I/O error occurred.

See Also
spe_out_intr_mbox_status;

 SPE Runtime Management Library, Version 2.0

���® SPE MFC Problem State Facilities
50

spe_out_intr_mbox_status

C Specification
 #include <libspe2.h>

 int spe_out_intr_mbox_status (spe_context_ptr_t spe)

Description
The spe_out_intr_mbox_status function fetches the status of the SPU outbound interrupt
mailbox for the SPE context specified by the spe parameter. A 0 value is return if the mailbox is
empty. A non-zero value specifies the number of 32-bit unread mailbox entries.

Parameters

spe Specifies the SPE context for which the SPU outbound mailbox has to
be read.

Return Value
>0 the number of 32-bit mailbox messages available for read

0 no data available

-1 error condition and errno is set appropriately

Possible errors include:

ESRCH The specified SPE context is invalid.

EIO An I/O error occurred.

See Also
spe_out_intr_mbox_read;

SPE Runtime Management Library, Version 2.0

 SPE MFC Problem State Facilities ���®
51

SPE SPU Signal Notification Facility

spe_signal_write

C Specification
 #include <libspe2.h>

 int spe_signal_write (spe_context_ptr_t spe, unsigned int signal_reg, unsigned int data)

Description
The spe_signal_write function writes data to the signal notification register specified by
signal_reg for the SPE context specified by the spe parameter.

Parameters

spe Specifies the SPE context whose signal register is to be written to.

signal_reg Specifies the signal notification register to be written. Valid signal
notification registers are:

SPE_SIG_NOTIFY_REG_1 SPE signal notification register 1

SPE_SIG_NOTIFY_REG_2 SPE signal notification register 2
data The 32-bit data to be written to the specified signal notification

register.

Return Value
On success, 0 is returned. On failure, -1 is returned and errno is set appropriately.

Possible errors include:

ESRCH The specified SPE context is invalid.

EIO An I/O error occurred

See Also

 SPE Runtime Management Library, Version 2.0

���® Direct SPE Access for Applications
52

Direct SPE Access for Applications
Applications may access directly an SPE’s local store memory and the various problem state
registers as described in detail below.

The function spe_ls_area_get maps the local store of an SPE to the thread’s address space. It
can then be accessed like regular system memory. This is, however, only recommended for
special purpose usage, since in general DMA to and from local store is far more efficient. A
more common usage of the local store mapping is to communicate the effective address of one
SPE’s local store to a program running on another SPE, which allows that SPE to use DMA to
directly transfer data to and from another local store. This is very efficient, since the DMA
transfer will directly go from SPE to SPE, and not through system memory.

The function spe_ps_area_get maps a selected area of an SPE’s problem state registers to the
thread’s address space. Thus the problem state pointer can be used to access directly problem
state features without having to make library system calls. Problem state features include multi-
source synchronization, proxy DMAs, mailboxes, and signal notifiers. In addition, these pointers,
along with local store pointers (see spe_ls_area_get), can be used to perform and control SPE to
SPE communications via mailboxes, DMA’s and signal notification.

When using direct problem state access, applications have to take special care to serialize
multiple problem state operations appropriately. Also, when using both library and direct
problem state operations, these must be properly serialized with respect to each other. Otherwise,
unexpected behavior and/or application errors may arise.

Linux Note: Stopping a running SPU by writing to SPE_RunCntrl will not ensure that the Linux
kernel (scheduler) will be informed so that it can reclaim the SPE.

SPE Runtime Management Library, Version 2.0

 Direct SPE Access for Applications ���®
53

spe_ls_area_get

C Specification
 #include <libspe2.h>

 void * spe_ls_area_get (spe_context_ptr_t spe)

Description
The spe_ls_area_get functions maps the local store of the SPE context specified by spe to the
thread’s address space and returns a pointer to the start of the memory mapped local store area.

The size of the local store area can be obtained by using the function spe_ls_size_get.

Parameters

spe Specifies the SPE context

Return Value
On success, a valid pointer to the start of the memory mapped local store is returned. On failure,
NULL is returned and errno is set appropriately.

Possible errors include:

ESRCH The specified SPE context is invalid.

ENOSYS Access to the local store of an SPE thread is not supported by the
operating system.

See Also
spe_ps_area_get; spe_ls_size_get;

 SPE Runtime Management Library, Version 2.0

���® Direct SPE Access for Applications
54

spe_ls_size_get

C Specification
 #include <libspe2.h>

 int spe_ls_size_get (spe_context_ptr_t spe)

Description
The spe_ls_size_get function returns the size of the SPE local store in number of bytes.

The Cell Broadband Engine Architecture does not specify a fixed size for the SPE local store.
Applications that are intended to be portable across different implementations of the CBEA
should therefore not rely on a specific local store size, for example, 256 KB, but obtain the actual
value through this call.

Parameters

spe Specifies the SPE context

Return Value
On success, a positive number representing the SPE local store size in number of bytes is
returned. On failure, -1 is returned and errno is set appropriately.

Possible errors include:

ESRCH The specified SPE context is invalid.

See Also
spe_ls_area_get; spe_mfcio_get/getb/getf/put/putb/putf

SPE Runtime Management Library, Version 2.0

 Direct SPE Access for Applications ���®
55

spe_ps_area_get

C Specification
 #include <libspe2.h>

 void * spe_ps_area_get (spe_context_ptr_t spe, enum ps_area area)

Description
The spe_ps_area_get function maps the problem state area specified by ps_area of the SPE
context specified by spe to the thread’s address space and returns a pointer to the beginning of
that problem state.

In order to obtain a problem state area pointer the specified SPE context must have been created
with the SPE_MAP_PS flag set.

Parameters

spe The identifier of a specific SPE context.

ps_area The problem state area pointer to be granted access and returned. Possible
problem state areas include:

SPE_MSSYNC_AREA Return a pointer to the specified SPE’s
MFC multisource synchronization register
problem state area as defined by the
following structure:

typedef struct spe_mssync_area
{
 unsigned int MFC_MSSync;
} spe_mssync_area_t;

SPE_MFC_COMMAND_AREA Return a pointer to the specified SPE’s
MFC command parameter and command
queue control area as defined by the
following structure:

typedef struct spe_mfc_command_area {
 unsigned char reserved_0_3[4];
 unsigned int MFC_LSA;
 unsigned int MFC_EAH;
 unsigned int MFC_EAL;
 unsigned int MFC_Size_Tag;
 union {
 unsigned int MFC_ClassID_CMD;
 unsigned int MFC_CMDStatus;
 };
 unsigned char reserved_18_103[236];

 SPE Runtime Management Library, Version 2.0

���® Direct SPE Access for Applications
56

 unsigned int MFC_QStatus;
 unsigned char reserved_108_203[252];
 unsigned int Prxy_QueryType;
 unsigned char reserved_208_21B[20];
 unsigned int Prxy_QueryMask;
 unsigned char reserved_220_22B[12];
 unsigned int Prxy_TagStatus;
} spe_mfc_command_area_t;

Note: The MFC_EAH and MFC_EAL
registers can be written simultaneously
using a 64-bit store. Likewise,
MFC_Size_Tag and MFC_ClassID_CMD
registers can be written simultaneously
using a 64-bit store.

SPE_CONTROL_AREA Return a pointer to the specified SPE’s
SPU control area as defined by the
following structure:

typedef struct spe_spu_control_area {
 unsigned char reserved_0_3[4];
 unsigned int SPU_Out_Mbox;
 unsigned char reserved_8_B[4];
 unsigned int SPU_In_Mbox;
 unsigned char reserved_10_13[4];
 unsigned int SPU_Mbox_Stat;
 unsigned char reserved_18_1B[4];
 unsigned int SPU_RunCntl;
 unsigned char reserved_20_23[4];
 unsigned int SPU_Status;
 unsigned char reserved_28_33[12];
 unsigned int SPU_NPC;
} spe_spu_control_area_t;

SPE_SIG_NOTIFY_1_AREA Return a pointer to the specified SPE’s
signal notification area 1 as defined by the
following structure:

typedef struct spe_sig_notify_1_area {
 unsigned char reserved_0_B[12];
 unsigned int SPU_Sig_Notify_1;
} spe_sig_notify_1_area_t;

SPE_SIG_NOTIFY_2_AREA Return a pointer to the specified SPE’s
signal notification area 2 as defined by the
following structure:

typedef struct spe_sig_notify_2_area {
 unsigned char reserved_0_B[12];

SPE Runtime Management Library, Version 2.0

 Direct SPE Access for Applications ���®
57

 unsigned int SPU_Sig_Notify_2;
} spe_sig_notify_2_area_t;

Return Value
On success, a valid pointer to the requested problem state area is returned. On failure, NULL is
returned and errno is set appropriately.

Possible errors include:

ESRCH The specified SPE context is invalid.

EACCES Permission for direct access to the specified problem state area is
denied or the SPE context was not created with memory-mapped
problem state access.

EINVAL The specified problem state area is invalid.

ENOSYS Access to the specified problem area for the specified SPE context is
not supported by the operating system.

See Also
spe_ls_area_get; spe_context_create;

The data structures specified above are defined in the header files of the library implementation.

 SPE Runtime Management Library, Version 2.0

���® PPE-assisted Library Calls
58

PPE-assisted Library Calls
The SPEs on a CBEA processor are designed to bear the computational workload of an
application. They are not very well-suited for the general purpose code often needed outside the
“compute kernels” of an application.

The SPE Runtime Management Library provides the infrastructure that enables the SPE program
to issue a callback to the PPE-side of the SPE thread. From an SPE program’s point of view, this
mechanism allows for the offloading of certain functions to the PPE.

The SPE program uses the stop and signal instruction9 with a signal type 0x21XX to stop the
SPE and notify the PPE-side of the SPE thread that the callback with number XX should be
executed. The SPE may pass 4 bytes as an argument to the library function. This argument has to
follow immediately the stop and signal instruction in the SPE local store.

In libspe the execution of callbacks is handled inside the spe_context_run function. It
recognizes the SPE callback as a special stop reason – stop and signal with a signal type in the
range of 0x2100 to 0x21ff – and matches the lower 8 bit of the signal type with a list of
registered library callback function handlers, which will then be called. After the function returns,
spe_context_run restarts SPE program execution at the last SPU instruction counter plus 4, that
is, it skips the argument in the SPE local store.

The prototype of a valid library callback function handler must be

int function_name (void *ls_base, unsigned int ls_address)

 Parameters:

 ls_base a pointer to the beginning of the memory-mapped SPE local store

 ls_address the offset of the callback argument relative to ls_base in bytes

 Return Value:

On success, the function returns 0.

A non-zero return value is interpreted as failure. This return value will be reported as part
of stopinfo.

A simple example of a callback that just prints its argument:

/*
 * simple library callback handler
 */

int simple_handler (void *ls_base, unsigned int ls_address)
{
 int arg = *((int *)((char *)ls_base + ls_address));

9 See “SPE C/C++ Language Extensions, Version 2.1”, section 2.11. “Control Intrinsics”

spu_stop: stop and signal – (void) spu_stop(type)
Execution of the SPU program is stopped. The address of the stop instruction is placed into the least significant
bits of the SPU NPC register. The signal type is written to the SPU status register, and the PPU is interrupted.

SPE Runtime Management Library, Version 2.0

 PPE-assisted Library Calls ���®
59

 printf ("callback argument was %d \n", arg];
 return 0;
};

Before being able to use a library callback function, it has to be registered using the libspe
function spe_callback_handler_register.

Implementations of libspe may reserve certain callback numbers for “built-in” functions. For
example, the Linux implementation of this library reserves the numbers 0 and 1 for C99 and
Posix handlers respectively.

 SPE Runtime Management Library, Version 2.0

���® PPE-assisted Library Calls
60

spe_callback_handler_register

C Specification
 #include <libspe2.h>

 void spe_callback_handler_register (void *handler, unsigned int callnum)

Description
The spe_callback_handler_register function registers a user-defined function specified by the
function pointer handler as the library callback function identified by callnum.

Linux Note: The callnums 0 and 1 are reserved for C99 and Posix calls respectively.

Parameters

handler A function pointer to the user-defined callback handler.

callnum The function will be identified by this callnum. The valid range is
0..255.

Return Value
none

See Also
spe_context_run;

For Linux, see also default_c99_handler.h and default_posix1_handler.h

SPE Runtime Management Library, Version 2.0

 PPE-assisted Library Calls ���®
61

spe_callback_handler_deregister

C Specification
 #include <libspe2.h>

 void spe_callback_handler_deregister (unsigned int callnum)

Description
The spe_callback_handler_deregister function deregisters a user-defined function specified by
the function pointer handler as the library callback function identified by callnum.

Linux Note: The callnums 0 and 1 are reserved for C99 and Posix calls respectively and cannot
be deregistered.

Parameters

callnum The function identified by this callnum will be deregistered. The valid
range is 0..255.

Return Value
none

See Also
spe_context_run; spe_callback_handler_register;

 SPE Runtime Management Library, Version 2.0

���® Appendix A: Data Structures
62

Appendix A: Data Structures
This section summarizes the specified data structures upon which the libspe API relies. These
data structures are defined in the <libspe2.h> header file. Any libspe application should include
this header file.

SPE Context
/*
 * spe_context_ptr_t
 * This pointer serves as the identifier for a specific
 * SPE context throughout the API (where needed)
 */
typedef struct spe_context * spe_context_ptr_t;

SPE Gang Context
/*
 * spe_gang_context_ptr_t
 * This pointer serves as the identifier for a specific
 * SPE gang context throughout the API (where needed)
 */
typedef struct spe_gang_context * spe_gang_context_ptr_t;

SPE Program Handle
/*
 * SPE program handle
 * Structure spe_program_handle per CESOF specification
 * libspe2 applications usually only keep a pointer
 * to the program handle and do not use the structure
 * directly.
 */
typedef struct spe_program_handle {
 /*
 * handle_size allows for future extensions of the spe_program_handle
 * struct by new fields, without breaking compatibility with existing users.
 * Users of the new field would check whether the size is large enough.
 */
 unsigned int handle_size;
 void *elf_image;
 void *toe_shadow;
} spe_program_handle_t;

SPE Runtime Management Library, Version 2.0

 Appendix A: Data Structures ���®
63

SPE Runtime Error Information
/*
 * SPE stop information
 * This structure is used to return all information available
 * on the reason why an SPE program stopped execution.
 * This information is important for some advanced programming
 * patterns and/or detailed error reporting.
 */

/* spe_stop_info_t
 */
typedef struct spe_stop_info {
 unsigned int stop_reason;
 union {
 int spe_exit_code;
 int spe_signal_code;
 int spe_runtime_error;
 int spe_runtime_exception;
 int spe_runtime_fatal;
 int spe_callback_error;
 void *__reserved_ptr;

unsigned long long __reserved_u64;
 } result;
 int spu_status;
} spe_stop_info_t;

SPE Problem State Areas
/* spe problem state areas
 */

typedef struct spe_mssync_area {
 unsigned int MFC_MSSync;
} spe_mssync_area_t;

typedef struct spe_mfc_command_area {
 unsigned char reserved_0_3[4];
 unsigned int MFC_LSA;
 unsigned int MFC_EAH;
 unsigned int MFC_EAL;
 unsigned int MFC_Size_Tag;
 union {
 unsigned int MFC_ClassID_CMD;
 unsigned int MFC_CMDStatus;
 };
 unsigned char reserved_18_103[236];

 SPE Runtime Management Library, Version 2.0

���® Appendix A: Data Structures
64

 unsigned int MFC_QStatus;
 unsigned char reserved_108_203[252];
 unsigned int Prxy_QueryType;
 unsigned char reserved_208_21B[20];
 unsigned int Prxy_QueryMask;
 unsigned char reserved_220_22B[12];
 unsigned int Prxy_TagStatus;
} spe_mfc_command_area_t;

typedef struct spe_spu_control_area {
 unsigned char reserved_0_3[4];
 unsigned int SPU_Out_Mbox;
 unsigned char reserved_8_B[4];
 unsigned int SPU_In_Mbox;
 unsigned char reserved_10_13[4];
 unsigned int SPU_Mbox_Stat;
 unsigned char reserved_18_1B[4];
 unsigned int SPU_RunCntl;
 unsigned char reserved_20_23[4];
 unsigned int SPU_Status;
 unsigned char reserved_28_33[12];
 unsigned int SPU_NPC;
} spe_spu_control_area_t;

typedef struct spe_sig_notify_1_area {
 unsigned char reserved_0_B[12];
 unsigned int SPU_Sig_Notify_1;
 } spe_sig_notify_1_area_t;

typedef struct spe_sig_notify_2_area {
 unsigned char reserved_0_B[12];
 unsigned int SPU_Sig_Notify_2;
 } spe_sig_notify_2_area_t;

SPE Event Structure
/*
 * SPE event structure
 * This structure is used for SPE event handling
 */

/*
 * spe_event_data_t
 * User data to be associated with an event
 */
typedef union spe_event_data
{

SPE Runtime Management Library, Version 2.0

 Appendix A: Data Structures ���®
65

 void *ptr;
 unsigned int u32;
 unsigned long long u64;
} spe_event_data_t;

/* spe_event_t
 */
typedef struct spe_event_unit
{
 unsigned int events;
 spe_context_ptr_t spe;
 spe_event_data_t data;
} spe_event_unit_t;

 SPE Runtime Management Library, Version 2.0

���® Appendix B: Symbolic Constants
66

Appendix B: Symbolic Constants
This section summarizes the specified symbolic constants the libspe API relies on. These
symbols are defined in the <libspe2.h> header file. Any libspe application should include this
header file.

SPE Context Creation
spe_context_create
SPE_EVENTS_ENABLE Event handling will be enabled on this SPE context

SPE_CFG_SIGNOTIFY1_OR Configure the SPU Signal Notification 1 Register to be in
“logical OR” mode instead of the default “Overwrite” mode.

SPE_CFG_SIGNOTIFY2_OR Configure the SPU Signal Notification 2 Register to be in
“logical OR” mode instead of the default “Overwrite” mode.

SPE_MAP_PS Request permission for memory-mapped access to the SPE’s
problem state area(s).

SPE_ISOLATE This context will execute on an SPU in the isolation mode.
The specified SPE program must be correctly formatted for
isolated execution.

spe_gang_context_create
<none> <none defined today>

SPE Run Control
spe_context_run
SPE_RUN_USER_REGS Specifies that the SPE setup registers r3, r4, and r5 are

initialized with the 48 bytes pointed to by argp

SPE_NO_CALLBACKS Specifies that registered SPE library calls (“callbacks” from
this library’s view) should not be automatically executed. If
a callback is encountered, spe_context_run will return as if
the SPU would have issues a regular stop and signal
instruction. Details can then be found in stopinfo.

spe_context_run; spe_stop_info_read;
SPE_EXIT SPE program terminated calling exit(code) with code in the

range 0..255. The code will be saved in spe_exit_code.

SPE_STOP_AND_SIGNAL SPE program stopped because SPU executed a stop and
signal instruction. Further information in spe_signal.

SPE Runtime Management Library, Version 2.0

 Appendix B: Symbolic Constants ���®
67

SPE_RUNTIME_ERROR SPE program stopped because of one of the reasons found in
spe_runtime_error.

SPE_RUNTIME_EXCEPTION SPE program stopped asynchronously because of a runtime
exception (event) described in spe_runtime_exception. In
this case, spe_status would be meaningless and is therefore
set to -1.

Linux Note: This error situation can only be caught and
reported by spe_context_run if the SPE context was created
with the flag SPE_EVENTS_ENABLE indicating that event
support is requested. Otherwise the Linux kernel will
generate a signal to indicate the runtime error.

SPE_RUNTIME_FATAL SPE program stopped for other reasons, usually fatal
operating system errors such as insufficient resources.
Further information in spe_runtime_fatal.
In this case, spe_status would be meaningless and is
therefore set to -1.

SPE_CALLBACK_ERROR A library callback returned a non-zero exit value, which is
provided in spe_callback_error.
spe_status contains the information about the failed library
callback (spe_status & 0x3fff0000 is the stop code which led
to the library callback)

SPE_DMA_ALIGNMENT A DMA alignment error occurred

SPE_DMA_SEGMENTATION A DMA segmentation error occurred

SPE_DMA_STORAGE A DMA storage error occurred

SPE_SPU_HALT SPU was stopped by halt

SPE_SPU_SINGLE_STEP SPU is in single-step mode

SPE_SPU_INVALID_INSTR SPU has tried to execute an invalid instruction

SPE_SPU_INVALID_CHANNEL SPU has tried to access an invalid channel

SPE Events

SPE_EVENT_OUT_INTR_MBOX Data available to be read from the SPU outbound
interrupting mailbox. This event will be generated, if
the SPU has written at least one entry to the SPU
outbound interrupting mailbox (see

 SPE Runtime Management Library, Version 2.0

���® Appendix B: Symbolic Constants
68

spe_out_intr_mbox_read).

SPE_EVENT_IN_MBOX Data can now be written to the SPU inbound mailbox.
This event will be generated, if the SPU inbound
mailbox had been full and the SPU read at least on
entry, so that now it can be written to the SPU inbound
mailbox again (see spe_in_mbox write).

SPE_EVENT_TAG_GROUP An SPU event tag group signaled completion (see
spe_tag_group_read).

SPE_EVENT_SPE_STOPPED Program execution on the SPE has stopped (see
spe_stop_info_read)

SPE_EVENT_ALL_EVENTS Interest in all defined SPE events. This corresponds to
a bit-wise OR of all flags above.

SPE Tag Group Completion Facility

SPE_TAG_ALL The function suspends execution until all DMA commands in the
tag groups enabled by the mask parameter have no outstanding
DMAs in the proxy command queue of the SPE context specified
by spe. The masked tag status is returned.

SPE_TAG_ANY The function suspends execution until any DMA commands in the
tag groups enabled by the mask parameter have no outstanding
DMAs in the proxy command queue of the SPE context specified
by spe. The masked tag status is returned.

SPE_TAG_IMMEDIATE The function returns the tag status for the tag groups specified by
the mask parameter for the proxy command queue of the SPE
context specified by the spe.

SPE Mailbox Facility

SPE_MBOX_ALL_BLOCKING The call will block until all count mailbox messages
have been read.

SPE_MBOX_ANY_BLOCKING The call will block until at least one mailbox message
has been read.

SPE_MBOX_ANY_NONBLOCKING The call will read as many mailbox messages as
possible up to a maximum of count without blocking.

SPE Runtime Management Library, Version 2.0

 Appendix B: Symbolic Constants ���®
69

SPE Problem State Areas

SPE_MSSYNC_AREA MFC multisource synchronization register problem state
area

SPE_MFC_COMMAND_AREA MFC command parameter and command queue control
area

SPE_CONTROL_AREA SPE control area

SPE_SIG_NOTIFY_1_AREA SPE signal notification area 1

SPE_SIG_NOTIFY_2_AREA SPE signal notification area 2

 SPE Runtime Management Library, Version 2.0

	Table of Contents
	About This Document
	Audience
	Version History
	Related Documentation

	Overview
	Examples

	SPE Context Creation
	spe_context_create
	C Specification
	Description
	Parameters
	Return Value
	See Also

	spe_context_destroy
	C Specification
	Description
	Parameters
	Return Value
	See Also

	spe_gang_context_create
	C Specification
	Description
	Parameters
	Return Value
	See Also

	spe_gang_context_destroy
	C Specification
	Description
	Parameters
	Return Value
	See Also

	SPE Program Image Handling
	spe_image_open
	C Specification
	Description
	Parameters
	Return Value
	See Also

	spe_image_close
	C Specification
	Description
	Parameters
	Return Value
	See Also

	spe_program_load
	C Specification
	Description
	Parameters
	Return Value
	See Also

	SPE Run Control
	spe_context_run
	C Specification
	Description
	Parameters
	Return Value
	See Also
	Note

	spe_stop_info_read
	C Specification
	Description
	Parameters
	Return Value
	See Also

	SPE Event Handling
	spe_event_handler_create
	C Specification
	Description
	Parameters
	Return Value
	See Also

	spe_event_handler_destroy
	C Specification
	Description
	Parameters
	Return Value
	See Also

	spe_event_handler_register
	C Specification
	Description
	Parameters
	Return Value
	See Also

	spe_event_handler_deregister
	C Specification
	Description
	Parameters
	Return Value
	See Also

	spe_event_wait
	C Specification
	Description
	Parameters
	Return Value
	See Also

	SPE MFC Problem State Facilities
	SPE MFC Proxy Command Issue
	spe_mfcio_put, spe_mfcio_putb, spe_mfcio_putf
	C Specification
	Description
	Parameters
	Return Value
	See Also

	spe_mfcio_get, spe_mfcio_getb, spe_mfcio_getf
	C Specification
	Description
	Parameters
	Return Value
	See Also

	SPE MFC Proxy Tag-Group Completion Facility
	spe_mfcio_tag_status_read
	C Specification
	Description
	Parameters
	Return Value
	See Also

	spe_out_mbox_read
	C Specification
	Description
	Parameters
	Return Value
	See Also

	spe_out_mbox_status
	C Specification
	Description
	Parameters
	Return Value
	See Also

	spe_in_mbox_write
	C Specification
	Description
	Parameters
	Return Value
	See Also

	spe_in_mbox_status
	C Specification
	Description
	Parameters
	Return Value
	See Also

	spe_out_intr_mbox_read
	C Specification
	Description
	Parameters
	Return Value
	See Also

	spe_out_intr_mbox_status
	C Specification
	Description
	Parameters
	Return Value
	See Also

	SPE SPU Signal Notification Facility
	spe_signal_write
	C Specification
	Description
	Parameters
	Return Value
	See Also

	Direct SPE Access for Applications
	spe_ls_area_get
	C Specification
	Description
	Parameters
	Return Value
	See Also

	spe_ls_size_get
	C Specification
	Description
	Parameters
	Return Value
	See Also

	spe_ps_area_get
	C Specification
	Description
	Parameters
	Return Value
	See Also

	PPE-assisted Library Calls
	spe_callback_handler_register
	C Specification
	Description
	Parameters
	Return Value
	See Also

	spe_callback_handler_deregister
	C Specification
	Description
	Parameters
	Return Value
	See Also

	Appendix A: Data Structures
	SPE Context
	SPE Gang Context
	SPE Program Handle
	SPE Runtime Error Information
	SPE Problem State Areas
	SPE Event Structure

	Appendix B: Symbolic Constants
	SPE Context Creation
	SPE Run Control
	SPE Events
	SPE Tag Group Completion Facility
	SPE Mailbox Facility
	SPE Problem State Areas

